If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+4x-22=0
a = 7; b = 4; c = -22;
Δ = b2-4ac
Δ = 42-4·7·(-22)
Δ = 632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{632}=\sqrt{4*158}=\sqrt{4}*\sqrt{158}=2\sqrt{158}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{158}}{2*7}=\frac{-4-2\sqrt{158}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{158}}{2*7}=\frac{-4+2\sqrt{158}}{14} $
| 0.6x+8.2=4.3 | | 17j=-170 | | 2.5x-4=16 | | -24=-8(-10+s) | | −12m−6=6(5m−1) | | 50+2=(a+3) | | 8-48=x-24 | | x2+8x+12@x=10 | | x2+8x+12x=10 | | -21x+16x-62=88 | | 180=145+35-(4y) | | x+5/2-2000+1/5x+1000=3/2x-1000+2x-1000+1/4x+1400 | | w-141/12=-23/4 | | d5+-25=-75 | | -5(q-3)=-35 | | 3x/12=9/x | | L=90-w | | w-41/5=112/5 | | .75x+7=54.85 | | X=3y=5 | | 39+2x+1+3x+13=180 | | g=(-11)=19 | | x2^-3x+2=0 | | 531441(k7)=6.2 | | 2x+1/2=–5 | | 4x-6=65 | | y=3-(11-5y) | | a*3/10=2/3 | | (4y)+35=180 | | (3x–8)=24 | | x=529-x | | 145+(35y)=180 |